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Local stress and strain during crack growth 
by steady state creep 
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Experimental methods are used to measure the distr ibution of plastic strain ahead of a 
crack propagating under steady state creep conditions. Using these strains the local strain- 
rates are known, and from these the steady state stress distr ibution is deduced assuming 
power law behaviour. The resulting information indicates that the stress distr ibution is 
closer to ass ~ than to ass ~x  -u(2m). It is shown that for low values of the 
exponent, m, in the power law, that creep crack growth should correlate with the elastic 
stress intensity factor, whereas at large m values a better correlation is expected with the 
net stress. 

1. Introduction 
In the interests of operational safety of engineering 
plant and the design of plant operating at high 
temperatures, it is necessary to have a foundation 
for design against the growth of creep cracks. 
Theories of triple point cracking [1] and cavi- 
tation at grain boundaries [2] are well developed, 
but explain only the micromechanics operating in 
the region of stress and strain concentration at the 
tip of a macrocrack. The engineering requirement 
is a description of how a macro-creep-crack would 
lead to failure of an engineering structure. 

Historically, theories of failure by creep have 
encompassed geometrical features of cracking into 
the mathematical formulation of a 'damage' 
function [3]. Such theories are quire successful 
and have recently been extended by more detailed 
treatment of material behaviour in the crack tip 
vicinity [4]. Other theories have developed in 
analogous ways to yielding theory, using such con- 
cepts as a 'reference stress' [5]. The size and 
physical location of the reference stress is then 
used to allow for all geometrical phenomena and 
the final failure considered to be equivalent to that 
of a uniaxial stress-rupture test piece. 

In such work the details of cracking are entirely 
omitted, but allowed for somehow in the phenom- 
enology. There is a danger that by avoiding 
explicit treatment of the moving crack that similar 
problems, to those in brittle fracture, may be en- 
countered before the mechanics of fracture were 
well understood. It therefore seems of value to 
pursue the explicit treatment of crack advance 
under creep conditions. 

Early work by Wells [6] indicated that creep- 
crack growth was susceptible to treatment using 
fracture mechanics parameters. Subsequently 
empirical correlations were established between 
the rate of creep-crack growth, da/dt, and the 
elastic stress intensity factor K [7, 8]. In cases 
where the exponent rn in the creep rate relation 
has large values, the correlation with K could not 
be established, though a good empirical correlation 
between da/dt and the net section stress was 
evident [9]. It has been shown [10] that both of 
these laws arise as special cases if the creep-crack 
growth rate is controlled by the crack-tip local 
stresses. When m = 1, that is for a viscous material 
obeying Newton's law, application of the Heft  
analogy [11] gives a crack-tip stress distribution 
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analogous to that in linear elastic behaviour, 
though of  course the behaviour is far from elastic. 
When m has values of  7 or more,  the steady state 
crack-tip stresses fall much more rapidly with 
distance down to the net section stress. Thus the 
transmission from a K-controlled to a net section 
stress-controlled cracking rate can be explained 
simply as a function of m. 

Materials with K-controlled cracking rates have 
come to be called "creep brittle", while those with 
net stress control are called "creep ductile". How- 
ever, it would seem inappropriate to propagate this 
terminology since it seems likely that either type 
of material could have high or low ductility in 
principle, though fortuitous correlations may arise. 
Indeed the case of rn = 1 would appear to give K- 
control, though such a material behaviour is often 
associated with superplasticity. 

2. Theoretical considerations 
Making the usual five assumptions [3] concerning 
the behaviour of  metals during secondary creep 
(namely; incompressibility, creep rate independent 
of  hydrostatic stresses, existence of a flow 
potential,  isotropic behaviour, applicability of  
Norton's  Law for uniaxial tests) and strain rate 
tensor vii is: 

(t def: 3 020 Sij (1) 
v .  = dt = 2 \ % :  

Here Oe is the effective stress, ae is a material 
property and Si: arises from the deviatoric stress 
tensor [3]. Thus concentrating on the v11, and 
writing in terms of principal stresses 01, a2 ,03 ,  

d~11 B 
dt - 2(rn+1)/z [ ( O 1 - - e z )  2 + (02- -03)  2 

+ (o3 - ol )2 ] (m - 1)/2 

[ (o l  - -  o : )  - -  (os  - -  o i ) ]  ( 2 )  

Here the oe property has been incorporated into 
the property B following Pao and Marin [12].  

Further narrowing considerations to those of  
plane stress conditions (03 = o2s = o13 = 0) and 
to the region ahead of a slit crack, we find, 
according to polar co-ordinates with the origin at 
the crack tip, 0[ 0 30} 

ol (27rr)1/2 cos ~ 1 + sin -2 sin - -  + . . .  

0[ 0 
02 (2rrr)l/2 cos ~ 1 --  sin ~ sin + . . .  

2 1 0 0  

KI 0 0 30 
sin - cos - cos - -  + . . .  (3) o12 (2rrr)l/2 2 2 2 

Here KI is the mode I elastic stress intensity factor. 
With 0 = 0, r = x on the cracking plane: 

KI 
O" 1 - -  (2T/.x)l /2 

Hence under relaxation by power law creep we 
have from Equation 2, 

dtll B m B 
- -  E1 = 2 ( O 1 )  - ~  ~ ( o r )  rn (4) 

dt 

Here the ordinate y has origin at the crack tip. 
I f  a given critical displacement in the y 

direction is an adequate criterion for crack tip 
advance then we can deal simply with oy and ~y 
connected by the power law creep equation. 

In an earlier paper [14] an approximate 
method was used to obtain the steady state values 
of  oy(x) following viscous relaxation of the elastic 
distribution of stresses which would exist in the 
absence of creep. The relaxation of the elastic 
stresses given by 

KI 
oy - (27rx)V2 

was considered to be a transient at a fixed total 
strain. This elastic strain converts to plastic strain 
by time dependent viscous flow as in Fig. 1. 
Following the transient, which is known to be 
rapid [15], the stress reaches a steady state value, 
Oss, such that the strain t (x) is: 

= A G  (5) 

If  almost all the elastic strain is converted to 
plastic viscous strain then the elastic strain, K/E 
(27rx) a/2 is approximately: 

K 
- -  - A o s " ~  (6 )  
E(2rrx) 1/2 

This fixes the relaxed stress distribution such that 

ass c~ x -  1/2 m (7) 

Though this relaxation at constant total strain 
seems plausible during a rapid creep transient, and 
tile final dominance of  creep strain over elastic 
strain is a prerequisite for application of  Hoff 's  
analogy, the resulting stress distribution is not con- 
sistent with the work of Rice and Rosengren [16] 
and of  Hutchinson [17]. These authors base their 
stress distribution, following plastic flow, on the 
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Figure 1 (a) Relaxation of the local stress o from the 
linear elastic value at A to the steady state value at B. The 
residual elastic strain DC is much less than the viscous 
strain OC. (b) Local stress relaxation versus time. 

assumption that  the elastic strain energy density 
must have an exact 1/x variation as the crack tip is 
approached no matter  what material behaviour 

O c c u r s .  

Using the Hoff  analogy through an energy argu- 
ment  we can use the plasticity and creep rate 

power laws: 

,: = Bo m, ; = Bom. 

The complementary energy U for an element 
ahead of  the crack tip would be 

U = ( ' : d o  = [ B o m d o  _ __B a m + ,  (8) 
J J m + l  

If  all products of  the type t o  must have a 1Ix 
singularity at the crack tip, no mat ter  what s t ress -  
strain law operates, then U has such a singularity. 
Going to the total  complementary energy UT, by 
integrating throughout  the volume V, 

U T = Ud V = ~ ,  _ V (9) 

The oij steady state values can be arrived at by use 
of a variational theorem such that 

dU T ~u 
- : 0 ( l o )  

dass doss 

/72+I Here only the oij depends on x and so oij (x) 
must be proport ional  to 1Ix thus: 

Oss ~ x -1/(rn+l). (11) 

Further,  following this unproven assumption 
[16] that there must always be a 1Ix singularity in 
strain energy, then the local strains must show a 
dependence on x-m/(m + ~ ). 

Equivalent to the assumption o f  the 1Ix strain 
energy singularity is the Neuber rule [18] for con- 
centrated stresses with plastic deformation taking 
place. At each point  ahead of  the crack tip we can 
imagine the stress to fall from the hypothet ical  
linear elastic value by relaxing down the hyperbola 
o~ = Q2. Then as in Fig. 2 we have: 

O E E E  = OssJ :ss  

Relaxation occurs down to the intersection with 

the power law t = A o ~  which is the analogy of  
= A o ~ .  Since 

K 
os  = (2~.x) m , 

then 

= { K2 ll/(rn+O 
ass 1 2 ~ - ~ j  x -1 / (m+ l )  

Since both of  the models for the profile of  
steady state stress are built on assumptions and 
approximations i t  seems appropriate to verify 

(3" 
K/(2 n:x: ) 92 

A ( OE ,s 

- -  - - - -  (~ss, Css) 

Figure 2 Relaxation of elastic stress by plastic defor- 
mation according to Neuber. 
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Figure 3 Creep-crack growth in type 316 steel at 650 ~ C, X 20. (6 = 1.2 X 10 -s m h - '  ). 
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actual material behaviour experimentally. 
Accordingly, experiments were carried out on 
AISI 316 stainless steel under plane stress con- 
ditions thus avoiding the currently unpredictable 
plane strain effects. 

A previous model [10] to predict the rate of 
growth of a creep crack da/dt related to the 
cracking rate to the crack-tip stress distribution 
dependent of x -1/2m. The model predicted the 
experimentally observed dependence of da/dt on 
K for small rn, but on One~; for large m. In the 
appendix, it is shown that similar behaviour will 
occur if the crack tip steady state stresses depend 
o n  x -  1/(m + 1). 

3. Experimental methods and materials 
Specimens were cut from AISI 316 steel strip 
50ram wide and 0.75mm thick. The strip had 
been 20% reduced cold. The composition of the 
steel in wt % was 

C Mn Si S P 
0.06 1.79 0.51 0.018 0.023 

Ni Cr Mo Fe 

11.72 17.82 2.76 balance. 

The specimens were 10mm x 0.75mm x 150ram 
and double edge notches 0.7mm deep were cut in 
the middle of the specimens. The specimens were 
sealed in an evacuated capsule and heat-treated at 
1050 + 1 ~ C for 1 h, then air-cooled. The resulting 
grain size was 33/zrn using the linear intercept 
method. Specimens were ground to a 6/lm 
diamond paste finish and finally scratch-marks 
spaced approximately 0.1ram apart were made 
parallel to and covering the region of the notches. 

These specimens were tested in a modified 
Hounsfield tensometer at a constant crosshead dis- 
placement rate. During straining the specimens 
were enclosed in a vacuum chamber located on the 
Hounsfield tensometer and viewed through a 
window of optically flat silica in the vacuum 
chamber. Heating was by a resistance furnace with 
a circular viewing port, constructed by winding 
87/14 platinum/rhodium wire on a fused alumina 
cylinder and employing tantalum radiation shields. 
During testing the central 25 mm of the test piece 
varied in temperature by less than 5 ~ C. 

The specimen was viewed through a Zeiss 
microscope with a long focal length objective, 
positioned over the vacuum chamber and photo- 
graphs taken by a cine camera with a 5 rain time 

lapse setting. Tests were carried out at 650 ~ and 
750 ~ C with cross-head speeds of 1.2 x 10 -s m h  -1 
or 1.1 x 10  . 4  m h  -1  . After a primary region in 
which the load increased with strain the load be- 
came steady and the conditions were then equiv- 
alent to those of steady state creep. The time, ts, 
to reach a constant load condition was determined 
from a load-t ime recording and thus the positions 
of scribe lines were known from photographs at the 
onset of the constant load region and at successive 
intervals. 

Creep cracking did not initiate immediately 
from the notch, though the initiation time t i was 
greater than t s. Measurements of the displacement 
of scribe lines from the onset of steady state con- 
ditions were taken using a gauge length of three 
line spacings. Thus from the known time under 
steady state conditions local strain rates could be 
deduced. 

4. Experimental results 
Photographs illustrating the strain measurement 
method are shown in Fig. 3. To ensure that the 
local strains were in fact uniform over the gauge 
lengths chosen, the displacement, y, of each line 
from the cracking plane at points ahead of the 
notch at time t s was measured. At a later time t2 
(< ti), the displacements were remeasured and the 
additional displacements, u = ( Y t 2 -  Yts) were 
calculated. A typical result is shown in Fig. 4, 
where displacements only one side of the plane are 
shown since the situation is symmetrical. All gauge 
lengths used were within the range where displace- 
ments are linear with distance and the strain there- 
fore uniform. 

Fig. 5 shows the strain rates derived from the 
distribution of strains ahead of the creep crack 
propagating under steady state conditions at 
750 ~ C. Strain distributions measured after 162.7, 
182.7 and 199.2h, superimpose, demonstrating 
the steady state, though there is a change after 
228.5 h when the influence of the free boundary 
to which the crack is propagating may begin to be 
felt. 

The logarithmic co-ordinates emphasise the 
region R immediately ahead of the crack tip where 
the strain rate is approximately constant reflecting 
a region of constant stress. Beyond this the strain 
rate distribution reflects the stress profile which 
levels out as the net stress level is reached. 

Steady state strain rates were used to deduce 
stresses assuming power law creep, ;==Ao rn, 

2103 



0-06 

0.04 

E 
E 

0-02 

112 gouge length. 4 
I 
I 

I 

/ 

I 

I 
.2 O.4 

| 

0 I i I 

o 0 .6  o.$ 1.0 

y(mm) 

x 

Figure 4 Example of the variation of displacement u in the y direction versus distance in the y direction. Measurements 
taken 0.14 mm ahead of  the crack tip. 
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Figure 6 Crack tip stresses, derived from strain rates, as a function of distance from the crack tip x. 

where m is previously determined from a series of  
plain bar tests. Thus the stress distributions of  Fig. 
6 were arrived at. The models of  crack-tip stresses 
can be compared with this distr ibution graphically 
and by experimentally determining s where the 
experimental  distribution is f i t ted to Oss = Fx -s, F 
and s being constants determined by the applied 
stress and temperature.  Fig. 7 shows the com- 
parisons, though in making the comparison it is 
clearly necessary to omit  the constant strain rate 
and stress region, taking the origin for the stress 
distribution to be at a distance R from the ob- 
served crack tip. This distance R deserved further 
investigation, but  it  does not  seem to correspond 
to the reach of  microstructural  damage which 
appeared to be concentrated to within 120~ma of  
the crack tip whereas R was typical ly more than 

0.1 mm. This is due to the strain gradient within 
distance R of  the crack tip produced by stress 
relaxation before steady state conditions were 

established. 
The comparison of Fig. 7 indicates that the 

x-U(m+ll is a more successful description of  the 
experimental  results. Further ,  Table I shows the 

measured values of  s compared with the models 
where s = l / 2 m  and s = l / ( m + l ) ,  where m is 
taken from plain bar tests. Clearly the experi- 
mental s value is much closer to 1/(m + 1). 

5. Discuss ion  
The creep rate normal to the crack plane should be 

controlled by the local tension stress in that  
direction in the vicinity of  a crack tip, since this is 
the local effective stress. Derivation of  the local 

T A B L E I Comparison of experimental values of S with model predictions 

Temp Cross-head m plain 
(o C) rate bar tests 

(m h -1 ) 

S exptl. 1 
S - - -  

m + 1  

1 
S -  

2m 
R 
(ram) 

750 1.2 X i0 -s 7.0* 
750 1.1 X 10 -4 7.0 
650 1.2 X 10 -5 9.5* 

0.175 
0.195 
0.129 

0.125 
0.125 
0.096 

0.071 
0.071 
0.052 

0.3 
0.15 
0.15 

*Reference [9]. 
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Figure 7 Steady state stress distribution derived from measured local strain rates, and compared with model predictions 
for test at 650 ~ C and displacement rate ~ = 1.2 X 10 -s mh -I �9 

stresses from measured strain rates is therefore 
reasonable, though subject to the errors involved 
in the measurement of the exponent m. The stress 
distribution obtained in this way supports the 
x -v(m+l) distribution. The experimental work is 
therefore further circumstantial evidence of a 1Ix 
singularity in elastic strain energy density at a 

crack tip. 
The constant strain rate, constant stress region 

R is not entirely unexpected behaviour since many 
factors would dictate unusual behaviour very close 
to the tip. The slit crack equations generally used 
[16, 17] are not applicable very close to the tip of 
a real crack which has a finite width and traction 
free surfaces. Further the microstructural damage, 
seen in these experiments as creep cavities distri- 
buted ahead of the crack tip, must give rise to 
extra redistribution of stresses to an unknox~n 
distance. The region R is therefore of considerable 
interest as far as the mechanism of crack advance 
is concerned and further work on this is a progress. 

Appendix 
Assuming crack-tip stress distributions can be ob- 
tained using Neuber's rule [18] by imagining the 
hypotlletical elastic stress distribution to relax 
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down the hyperbola oe = constant to the point 
where it intersects the power law curve i =- ~ = 
At m, then the elastic stress K/(2zrx) 1/2 decays to 
the steady state value 

{ K2 tl/(m+1) 
~ = \2--~-E) x -v(m+'). (1a) 

Here K is the elastic stress intensity factor. 
Taking this as the new near-tip distribution we 

now have to find the level of the distribution using 
an overall equilibrium requirement of an un- 
changed toad carrying ability of the ligament. 

Consider a single edge-notched tension specimen 
of gross width W, crack length a, thickness B, 
undergoing creep at constant load P. Then 

W - a  

e = ~ 5s oss(x) ax (2h) 

Using Equation 1 A, 

1/(m + 1) 
P = B~w-a[o \2- -~]  K2 t X-1/(m+l) dx (3A) 

or 

P =  B ~ ]  m 

] 
(W - a) ~j~ + I) I 

J 

(4A) 



In Equation 4A the invalid assumption is that 
the near-tip distribution is continued fight across 
the ligament. In linear elastic fracture mechanics 
(LEFM) a similar problem arises and is dealt with 
by adjusting the load-carrying capacity with a 
finite width correction factor. This factor can be 
modified for the redistributed ass stresses as 
shown in [10]. Thus the K is modified to K '  and 
the K '  can be derived from the K-cahbration 
curves used in LEFM. Incorporating this method 
Equation 4A becomes 

1 p = B 

(5A) 

Thus K '  is given by 

K' = (27rAE) 1/2 

P rn W l (''+1)t2 
ff-W (m + 1) (W--a) m/(rn+')] (6A) 

Thus when m >> 1 ,K '  becomes 

K, = (2rrAE)ll2 [ P W ] (m+l)/~ 
BW (W--a) (7A) 

Here the second term is clearly the net section 
stress to the power ( m +  1)/2. 

Consider an element ahead of the crack tip 
where the local strain rate is given by 

d, 
i = A [Oss(X)] m, (8A) 
dt 

o r  

[{ K,2 tl/(m+l) )]rn 
d~ = A x -ll(m+a . (9A) 
dt [ \ ~ 7  

If the strain arises from a displacement u over a 
small local gauge length L, then the local displace- 
ment rate is: 

l / (m+ l )  - l / ( m + l  . (10A) 
dtdU = LA kt K ' :  , 

We now assume that when u reaches a critical 
value, u e atx = de, where d e is a material property, 
then parting occurs and the crack advances. This is 
consistent with the crack opening displacement 
work of Wells and McBride [6]. The crack tip then 
moves at a rate da/dt proportional to du/dt such 
that 

that is 

\m l (m  + I) 
da du x |  

dt dt \de/ 

lEAK 
, 2ml(m + l) 

LA (11A) 
dt 27rdle/: 

Thus for the case of Newtonian flow, which is 
directly analogous to LEFM, m = 1 and da/dt o: K, 
the growth rate is dependent on the elastic stress 
intensity factor. In contrast, for m >> 1, then 
da/dt~(anet) m. Between these limits the be- 
haviour can be described by 

da (K t) 2m/(m + 1)  
- -  OC 

dt 

This will represent the behaviour reasonably well 
until m rises sufficiently to make the net section 
stress correlation superior. As shown in [10], tests 
must cover a sufficient range of a/w to make the 
correlation apparent. 

Experimental work has shown an apparent cor- 
relation between da/dt and K in the intermediate 
m range (i.e. 7 > m  > 1) of the form da/dto~K m. 
It can be shown from the above analysis that such 
an apparent correlation can occur in this inter- 
mediate range. Equation 6A can be written as 

K' = (27rAE) 1/2 

m + t  ( W - -  

r . , .  ~](m + 1)/2 
= (27rAE) 1/2 {K/v tay~-~l 

where 

rn W 112 
N(a) = - -  m + i" (W--a) ml(m+l)" 

In this intermediate range, 

da - -  o: K ' 2 m / ( m + l ) .  
dt 

Substitution for K '  in Equation 11A: 

N(a)]~ 

dt 

i.e. an apparent correlation between creep-crack 
growth rate and K r a  . 
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